JJ : Build System

SYNOPSIS
ji [-m] build script file
build script file
or
JJ -v

ji is a make replacement. It uses a postfix script
language for defining the build commands.
Unlike make, it contains no default actions.
However, it does enable the user to write new
functions which can be used for building the
same kind of targets using the same commands.

SCRIPT SYNTAX

The script files have a very simple syntax. Here
are the various language elements:

* Strings

*Quoted Strings

*Function Calls

*Variables

Strings are written without quoting. A string
starts with a printable character other than the
special characters and ends when a whitespace
character is seen. Therefore, you can not have
spaces within your strings.

Quoted strings are in fact lists of strings,
separated by whitespace. Since whitespace is
used as a separator for list items, you can not
have spaces in list items either. This rule has
some exceptions, but it will hold true in most
cases. The quote characters are { and }. Here is
an example of a quoted string:

{a.c b.c d.c}

Function calls are strings starting with the #
character. When you call a function, the
preceding strings are passed as arguments to the
function. If there are less arguments than
required, missing arguments will be assigned to
the empty string. If there are more arguments
than required, they are discarded.

Variables are similar to the shell variables in
syntax. When you want to access a variable, you
shall refer to is as $VAR where VAR is the name
of the variable. When you want to set a variable,
you should simply refer to it as VAR. Although
any sequence of printable characters (except for
special characters) is acceptable as a variable

name, you should probably restrict yourself to
alphanumeric characters. This program is a work
in progress and later versions may not support
that.

COMMANDS

In order to build files, you need to describe the
building commands using the #command
function. This function takes a single argument,
which describes the various fields of the
command object. Here is an example command:

{ triggers {a.c b.h c.h}
outputs {a.o}
action { gcc -o a.o a.c -Wall }
message { Compiling a.c }

} #command

The triggers field contains a list of files which
cause the output to be re-generated if any of
them is newer than an output file. The outputs
field contains the list of files generated by this
command. Note that there are no phony targets
as in make. All members of triggers and
outputs shall be real files residing on disk.

The action field is a string, in which whitespace
is kept intact. This string is given to the shell
using the system function of libc. Therefore, you
can have environment variable references within
this action string. It's also possible to refer to the
fields of the command struct as variables in this
action string. For instance,

{ triggers {a.c b.h c.h}
outputs {a.o}
action { gcc -o $outputs a.c -Wall }
message { Compiling a.c }

} #command

Could be used instead of the previous command.
Note that the value of the action string is
computed right before the shell command is
executed. Therefore, you could do modifications
to the command using the #modify function and
the field-as-variable references in the action field
would still work.

The message field is parsed similarly to the
action field; the spaces are kept intact. When
you use the -m command line switch, jj prints
these message strings instead of the shell
commands being executed.

The above fields are the only pre-defined fields
of the command struct. You can add other fields

JJ: Build System 1/4

to the struct as well. Compiler options, library
options and etc are good candidates to be put in
fields of command structs. Note that the user
defined fields have string list semantics instead of
the single-string semantics like the action and
message fields.

Only the outputs and action fields are
mandatory for a command struct. You can have
commands which have no message field. In this
case jj will always print the action string. You
can also have commands without any triggers. In
that case, the command will run every time the
script is executed.

Modifying Already Defined Commands

It's also possible to modify already existing
commands using the #modify function. This
function takes two arguments:

*TARGETS, which is a list of target files.

*BODY, which describes the modifications to the
commands generating the given targets.

For instance, for the above command, we could
do:

a.o { +triggers g.h } #modify

This would add g.h to the list of triggers
generating a.o. You can also give the field name
without a plus sign:

a.o { triggers {a.c g.h} } #modify

This will replace the value of the triggers field.
VARIABLES

Variables are written similarly to shell variables.
You shall use the #set function to assign a simple
string to a variable. Other functions take the
name of a result variable as their first argument
and set the value of that variable accordingly.
Here is a simple assignment:

X HELLO #set

From now on, $X will refer to the string HELLO.
You can also use #set to implement indirection
similar to pointers:

$X xyzzy #set
will set the variable $HELLO to the string xyzzy.

There are two flavors of variables, local and

global variables. When you assign to a variable
that doesn't exist, the variable is created in the
global scope unless the variable has been created
using the #local function.

New scopes are created when the code enters a
user defined function. For instance, if you have:

pretty print A B C {

$A #print $B #print $C #print
pretty #print

} #function

$A, $B and $C are all new variables bound to
the arguments and have no relationship to global
variables with the same names.

If you set a value to a new variable in this
function

pretty print AB C {
$A #print $B #print $C #print
pretty #print
X HELLO #set

} #function

Then, $X will be created as a global variable.
However, if you had:

pretty print A B C {
$A #print $B #print $C #print
pretty #print
X #local
X HELLO #set
} #function

Then, $X will go out of scope when the function
returns.

When you have an undefined variable, its value
is simply the name of the variable. For instance,
if you have

{ outputs {a.o}

triggers {a.c}

action { gcc $CFLAGS -0 a.o -c a.c }
} #command

and $CFLAGS is not defined, it's passed
unmodified to the shell. This way, you can make
use of environment variables within your
actions.

JJ: Build System 2/ 4

USER DEFINED FUNCTIONS

The syntax for a new user defined function is:

function _name ARGUMENT-LIST {
statements
} #function

The function name is a simple variable name
without the preceding # character. The
ARGUMENT-LIST is either a single variable name
or a list of variable names quoted using the {}
pair. Here is a simple function:

compile {SOURCE HEADERS OBJECT} {
{ triggers { $SOURCE $HEADERS }
outputs {$0BJECT}
action { gcc -o $O0BJECT
-c $SOURCE }
} #command
} #function

We could call this function as follows:

a.c {parser.h env.h} a.o #compile

You can have multiple statements in the body of
the function. You can also create local variables
using the #local function as explained in the
VARIABLES section.

BUILT-IN FUNCTIONS

*VARNAME VALUE #set

*VARNAME #local

* FUNCNAME ARGS BODY #function
*VARNAME STR1 STR2 #strcat

This function concatenates two string lists and
stores the result in the variable called VARNAME.
The actual operation is a cross-product. If we
have

STR1 {al a2 .. aN} #set
STR2 {bl b2 .. bM} #set
STRX $STR1 $STR2 #strcat

the value of STRX would be

{albl alb2 .. albM
a2bl a2b2 .. a2bM ... aNbl
aNb2 .. aNbM}

If STR1 is a single string, this operation is
equivalent to prefixing all in STR2 with STR1. If
STR2 is a single string, then this operation
appends STR2 to all in STR1. If both are single
strings, then this operation simply concatenates

them together. If you want to join lists instead of
making a cross product, you can use the #set
function.

RESULT {$X $Y} #set

*VARNAME LIST BODY #foreach

This function iterates over the elements of the
LIST argument. At each step, the variable
VARNAME is set to the next element of the list
and statements in the BODY argument is
executed. When the loop terminates, value of the
loop variable is the last element of the list.

* FILENAME #include

This function runs another script file given by
FILENAME and continues from the current file
after that. The FILENAME argument can also be a
list of files, which are processed in the given
order.

*VARNAME LIST NEWSUFFIX #replace_suffix

Replaces the suffixes of the files in the given list
with the new suffix and stores the result in
variable VARNAME. The suffix of a file name is
the part that follows the last dot character. If a
file has no suffix, the new suffix is simply
appended to the file name.

*VARNAME LIST INDEX #nth

Stores the INDEXth element of LIST in variable
VARNAME. Indices start from zero. If the index is
out of range, the result variable is set to empty
string.

*FIELDS #command
*TARGETS FIELDS #modify
*VARNAME COMMAND-AND-ARGS #prgout

Runs the program given in COMMAND-AND-
ARGS and stores the output of the program (i.e.
what it prints to stdout in the given variable.
The second argument is a list of strings. Each
string is an element of the argv vector given to
execvp. Since the program is executed directly
instead of going through a shell, environment
variables and etc will not work correctly. If you
want shell effects, you can try running the shell
(/bin/sh) with appropriate options (-c etc).

JJ: Build System 3/4

*STRING #print

This function simply prints its sole argument to
stdout. If there are variables in the string, they
are expanded before being printed. Note that this
function is for debugging only, since it also prints

a prompt and an end-marker for the string. If you P rojec

want to get meaningful output at stdout, try
using a command which runs the echo program.

*STRING #comment

This function simply ignores its argument and
does nothing.

BUILDING IN ANOTHER DIRECTORY

If you want to build in a directory other than
your source directory, you can make use of the
$HERE variable. A method of doing so is given
here, you can maybe develop others.

The $HERE variable points to the directory in
which the current script being executed resides.
In other words, it's the directory name of the
script file. You can prefix your source files with
this directory in order to get file names
independent of where you run the jj program.
The variable always includes a trailing slash so
it's easy to do so.

For instance let's have a definition somewhere in
your included scripts:

compile {SOURCE HEADERS} {
{SRC HDR O0OBJECT} #local
SRC $HERE $SOURCE #strcat
HDR $HERE $HEADERS #strcat
OBJECT $SOURCE .o #replace suffix
{ triggers { $SRC $HDR }
outputs { $OBJECT }
action { gcc -c $SRC
-0 $0BJECT -Wall -g }
} #command
} #function

Given this function, and two scripts, one in
project/src:

a.c {a.h parser.h} #compile

and one in project/build:

{ ../jj-functions
../src/jjcool} #include

We can build in the build directory easily. Since
the call to #compiler will be from

t/src/jjcool, SHERE will have the value of
project/src/. The prefixed file names will be
absolute names and the compiler can work with
that. One shortcoming is that, local C include
directives do not work with this approach but it
can be solved easily by adding another option to
the compiler command line:

action { gcc -c $SRC -o $OBJECT
-Wall -g -I $HERE}

BUGS AND LIMITATIONS

Builtin functions do not check their arguments. If
you get them wrong, you might end up with a
very unhelpful segfault.

Since there is no error checking, there is very
little error reporting. When jj reports errors, it
doesn't tell you on which line you have made an
error. This is a serious limitation but I intend to
fix it soon, when I have more time to work on it.

COMMAND LINE SWITCHES

The -v command line switch causes jj to print its
version number and exit.

JJ: Build System 4/ 4

