
CARCHIVE Buffer

The buffer command creates a type and associated functions for a buffer object.

 type: buffer(elt_type,block_size);

Here, elt_type is the type of the objects to be stored in the buffer.
block_size is the size of each block for the buffer. The buffers are allocated
in block_size increments.

The generated functions are:

 type* pfx_new();
 void pfx_append(type* buffer, elt_type data);
 elt_type* pfx_collect(type *buffer, int *len);
 elt_type* pfx_collectd(type *buffer, int *len);
 void pfx_free(type *buffer);

Here, pfx is equal to type, but the trailing _t is cut off if there is one. So,
if you have:

 intbuffer_t : buffer(int,50);

You would get functions like: intbuffer_new(), intbuffer_collect() etc. The
collect function returns an array of elements whose size is stored in *len if
len is not null. pfx_collectd is the same as pfx_collect, but calls pfx_free on
the buffer object after the collection.

The collect function returns null if the buffer was empty. You can test for
either len==0 or collect()==null, they are both true in this case.

CARCHIVE Quick Sort

The quick_sort command generates some code to sort the given elements. It's not
generated as a separate function. It simply generates some iterative stuff with
a limited stack size. The stack is big enough to sort 2^32 elements, i.e.
maximum number of elements you can have on a 32 bit machine. It does this by
always pushing the larger segment on the stack after partitioning. The syntax
is:

quick_sort(type, array, length)
 { QSRESULT= compare(array[QSI], array[QSP]); }

Here, type is the type of the elements to be sorted. array is a pointer or
array value to be sorted and length should be an integer with no side effects.
In the comparison code, the variables QSRESULT, QSI and QSP should be used as
shown, they are not place holders. The compare function shown above can in fact
be any expression comparing element QSI to element QSP. QSRESULT shall be set
to a negative value if element QSI is less than element QSP, zero if they are
equal and a positive value otherwise. The sort normally sorts in ascending
order. You can change the sense of comparison if you want descending order.

In the generated code, there are some generated variables starting with the
prefix yyqr. Make sure you don't use this weird prefix for your own things
visible in the quicksort code.

Unify

 unify(array, length, var) { UAR = compare(array[UAA], array[UAB]); }

stores the final length of the array in "var", which must be declared by the user.

The code inside the curly braces should compare element UAA to element UAB
and set UAR to non-zero iff the elements are different. UAA, UAB and UAR must
not be used in another context.

CARCHIVE Stack

The stack code generator takes a type as an argument:

name: stack(base_type);

Here, name is used for the generated type and the function prefixes. base_type
indicates the type of the elements. The following struct and functions are
created:

typedef struct {
int selts, tos;
base_type *elts;

} name_t;

name_t *name_new(int initial);
int name_empty(name_t *S);
void name_push(name_t *S, base_type V);
int name_pop(name_t *S, base_type* R);

The argument initial indicates how many elements shall be allocated initially.
Element tos of the stack is -1 when the stack is empty. Otherwise, elts[tos]
gives the top element on the stack. pop returns 0 if the stack is empty.
Otherwise, it returns 1 and stores the top element in *R if R is not null. The
elts array can be freed with free().

